The strength of PIN–PMN–PT single crystals under bending with a longitudinal electric field
نویسندگان
چکیده
The effect of an electric field on the bending behavior of [001] oriented and poled relaxor Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) single crystals was measured using a four point bending apparatus with a longitudinal electric field applied to the bar during bending. The surface finish and electric field amplitude were observed to affect the bending strength. Polished surfaces improve the tensile strength, while also polishing the edges resulted in a significantly larger increase in strength. Application of a DC electric field in the polarization direction during the tests reduced the strength. The four point bending apparatus also produces both tensile and compressive stress–strain curves for the material. Uniaxial compressive loading with an electric field in the [001] direction was carried out to compare the stress versus strain behavior measured in bending with that measured in uniaxial compression. Although the uniaxial compression behavior displays effects of a rhombohedral to orthorhombic phase transformation, this behavior is not observed on the compressive side in the bend bars. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications
Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstan...
متن کاملGrowth and Characterization on PMN-PT-Based
Lead magnesium niobate—lead titanate (PMN-PT) single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT) enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity). To obtain high quality and relatively low cost single cry...
متن کاملUltrahigh energy density harvested from domain-engineered relaxor ferroelectric single crystals under high strain rate loading
Relaxor ferroelectric single crystals have triggered revolution in electromechanical systems due to their superior piezoelectric properties. Here the results are reported on experimental studies of energy harvested from (1-y-x)Pb(In1/2Nb1/2)O3-(y)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 (PIN-PMN-PT) crystals under high strain rate loading. Precise control of ferroelectric properties through composition, size...
متن کاملA complete set of material properties of single domain 0.26Pb(In(12)Nb(12))O(3)-0.46Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystals.
Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PIN-PMN-PT) single crystals have been developed recently, which can increase the operating temperature by at least 20 degrees C compared to PMN-PT crystals. We have measured a complete set of material properties of single domain PIN-PMN-PT crystal, which is urgently needed in theoretical studies and electromechanical device designs using this ...
متن کاملFour-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure
We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anis...
متن کامل